
JMH	Cheatsheet	
Java	Microbenchmark	Harness	

	
@Benchmark:	
Annotates	 the	 benchmark	 method.	 JMH	 will	
produce	 the	 benchmark	 code	 for	 this	method	
during	compilation.	demarcates	the	benchmark	
payload,	 and	 JMH	 treats	 it	 specifically	 as	 the	
wrapper	which	contains	the	benchmark	code.	
 
@BenchmarkMode: 
Defines	the	mode	in	which	this	benchmark	will	
run.	
	
Mode.Throughput: (ops/time) 
Counts	 the	 total	 throughput	 over	 all	 worker	
threads.	This	mode	is	time-based,	and	it	will	run	
until	the	iteration	time	expires.	
	
Mode.AverageTime: (time/op) 
Counts	the	average	time	to	call	over	all	worker	
threads.	This	is	the	inverse	of	Mode.Throughput.	
	
Mode.SampleTime: 
Runs	 by	 continuously	 calling	 the	 benchmark	
methods,	 and	 randomly	 samples	 the	 time	
needed	for	the	call.	It	will	run	until	the	iteration	
time	expires	and	will	provide	a	detailed	view	on	
percentiles	at	the	end.	
	
Mode.SingleShotTime: 
Measures	the	time	for	a	single	operation.	Useful	
to	estimate	the	“cold”	performance,	when	you	
don’t	 want	 to	 hide	 the	 warmup	 invocations.	
Warning:	Timers	overhead	might	be	significant,	

if	benchmarks	are	small;	switch	to	SampleTime	
in	that	case.	
	
@State:	
State	objects	encapsulate	the	state	on	which	the	
benchmark	 is	 working	 on.	 The	 Scope	 of	 state	
object	 defines	 to	 which	 extent	 it	 is	 shared	
among	 the	 worker	 threads.	 States	 can	 be	
injected	 into	 benchmarks	 methods	 as	
arguments,	 and	 also	 on	 @Setup	 and	
@TearDown	methods.	
	
Scope.Benchmark: 
When	scope	 is	benchmark,	all	 instances	of	 the	
same	 type	 will	 be	 shared	 across	 all	 worker	
threads.	
	
Scope.Thread: 
When	scope	is	thread,	all	instances	of	the	same	
type	are	distinct,	even	if	multiple	state	objects	
are	injected	in	the	same	benchmark.	
	
Scope.Group: 
When	scope	is	group,	all	instances	of	the	same	
type	will	be	shared	across	all	threads	within	the	
same	group.	Each	thread	group	will	be	supplied	
with	its	own	state	object.	
	
@Setup: 
Fixture	to	run	before	 the	benchmark.	Can	only	
be	declared	 in	 classes	annotated	with	@State.	
You	may	optionally	provide	a	Level.	
	
@TearDown: 
Fixture	 to	 run	 after	 the	 benchmark.	 Same	
properties	as	the	@Setup	annotation.	

	
Level.Trial: 
Trial	is	the	set	of	benchmark	iterations.	
	
Level.Iteration: 
Iterations	is	the	set	of	benchmark	invocations.	
	
Level.Invocation: (Dangerous) 
A	benchmark	method	execution.	Only	usable	for	
benchmarks	taking	more	than	1	millisecond	per	
single	benchmark	method	invocation.	Check	the	
JavaDocs	for	more	details.	
	
@Threads: 
Default	number	of	threads	to	run.	Can	be	put	at	
a	 benchmark	 method	 to	 have	 effect	 on	 that	
method	only,	or	at	class	level	to	have	effect	on	
all	benchmarks	of	that	class.	May	be	overridden	
with	runtime	options.	
	
@Warmup, @Measurement: 
Allow	to	define	the	number	of	iterations,	time,	
time	unit	and	batch	size	via	annotations.	These	
can	also	be	set	via	command	line	or	in	the	main	
method	via	an	Options	object.	
	
@Fork: 
Allows	 to	 set	 forking	 parameters	 for	 the	
benchmark.		
- value	=	#	of	times	to	fork;	
- jvmArgs	 =	 JVM	 args	 to	 replace	 in	 the	

command	line.	Useful	for	external	profilers;	
- jvm	 =	 JVM	executable	 to	 run	with.	Useful	

for	testing	with	different	JVMs.	
Check	the	JavaDoc	for	more	details.	
	


